An Introduction to Social Simulation as a Learning Method
DOI:
https://doi.org/10.37467/gka-revedutech.v3.521Keywords:
Higher Education, Technologies in Education, Social Simulation, Artificial IntelligenceAbstract
The social simulation or SocSim is a method for the exploration and understanding of social processes through computer simulations. A society is a nonlinear complex system difficult to be modeled and studied. Therefore, in the last years, this paradigm has gained a great importance for the study of disciplines as diverse as sociology, biology, physics, chemistry, ecology, and economics. This paper presents the SocSim, the advantages of interactive learning, the main methodologies of research in this paradigm, practical tools to build these simulations, models ready for use in the classroom, and specific cases of emblematic social simulations as Sugarscape and the prisoner's dilemma. As explained, even without programming experience, SocSim is a powerful tool for understanding complex phenomena by interacting with simulated models which can be accessed from any web browser.
References
Iglesias, C. A. (Coord.). (2015). Asignatura de simulación social basada en agentes. Disponible en: http://www.gsi.dit.upm.es/es/noticias/1-gsi/183-curso-de-libre-eleccion-simulacion-socialbasada-en-agentes.html. Último acceso 20 de Julio de 2015.
Code Studio. Disponible en: https://studio.code.org/. Último acceso 20 de Julio de 2015.
Wikipedia. (2015). Comparativa de software para el modelado basado en agentes . Disponible en: https://goo.gl/mjDjrr. Último acceso 20 de Julio de 2015.
Google Public Data. Disponible en: http://www.google.com/publicdata/directory. Último acceso 20 de Julio de 2015.
Mosi-agil, modelado social de inteligencia ambiental aplicado a grandes instalaciones. Disponible en: https://www.gsi.dit.upm.es/mosi/. Último acceso 20 de Julio de 2015.
Netlogo. Disponible en: http://ccl.northwestern.edu/netlogo. Último acceso 20 de Julio de 2015.
Netlogo Models Library. Disponible en: http://ccl.northwestern.edu/netlogo/models/. Último acceso 20 de Julio de 2015.
Scratch. https://scratch.mit.edu/. Último acceso 20 de Julio de 2015.
Drogoul, A., Vanbergue, D. y Meurisse, T. (2003). Multi-agent based simulation: Where are the agents? In: Proceedings of the 3rd International Conference on Multi-agent-based Simulation II, MABS’02 , (pp. 1-15). Berlín, Alemania: Springer-Verlag. DOI: https://doi.org/10.1007/3-540-36483-8_1
Epstein, J. M. y Axtell, R. (1996). Growing Artificial Societies: Social Science from the Bottom Up. Washington, Estados Unidos: The Brookings Institution. DOI: https://doi.org/10.7551/mitpress/3374.001.0001
Farmer, J. D. y Foley, D. (2009). The economy needs agent-based modelling. Nature, 460 (7256), 685-686. DOI: https://doi.org/10.1038/460685a
Gilbert, N. y Troitzsch, K. G (2005). Simulation for the Social Scientist . Reino Unido: McGraw Hill.
Irwin, K., Edwards, K. y Tamburello, J. A. (2015). Gender, trust and cooperation in environmental social dilemmas. Social Science Research, 50 , 328-342. DOI: https://doi.org/10.1016/j.ssresearch.2014.09.002
Serrano, E., Poveda, G. y Garijo, M. (2014). Towards a holistic framework for the evaluation of emergency plans in indoor environments. Sensors, 14 (3):4513. DOI: https://doi.org/10.3390/s140304513
Downloads
Published
How to Cite
Issue
Section
License
Those authors who publish in this journal accept the following terms:
- Authors will keep the moral right of the work and they will transfer the commercial rights.
- After 1 year from publication, the work shall thereafter be open access online on our website, but will retain copyright.
- In the event that the authors wish to assign an Creative Commons (CC) license, they may request it by writing to publishing@eagora.org