Diseño persuasivo y algoritmos en plataformas de apuestas online
Implicaciones éticas, comunicativas y de salud pública
DOI:
https://doi.org/10.62701/revsocial.v13.5497Palabras clave:
Algoritmos de personalización, Inteligencia artificial, Juego online, Diseño persuasivo, Patrones oscuros, Comunicación algorítmica, Regulación ética digitalResumen
Este estudio analiza cómo los algoritmos de inteligencia artificial, la personalización y el diseño persuasivo configuran la experiencia del usuario en plataformas de juego online. Mediante una revisión sistemática (2015–2025), se identifican prácticas de segmentación conductual, dark patterns y comunicación algorítmica orientadas a maximizar la retención. Los hallazgos revelan un ecosistema tecnocomunicativo opaco, emocionalmente sugestivo y escasamente regulado, que plantea riesgos significativos para la autonomía del jugador. Se propone avanzar en transparencia, alfabetización digital crítica y regulación ética como estrategias clave para mitigar estos efectos.
Descargas
Estadísticas globales ℹ️
|
22
Visualizaciones
|
4
Descargas
|
|
26
Total
|
|
Citas
Ahmad, N., y Aurangzeb, M. (2025). Revolutionizing Casino Operations: The Role of Artificial Intelligence and Big Data in Enhancing Customer Loyalty and Revenue Growth. https://doi.org/10.13140/RG.2.2.31978.43209
Andersson, S., Carlbring, P., Lyon, K., Bermell, M., & Lindner, P. (2025). Insights into the temporal dynamics of identifying problem gambling on an online casino: A machine learning study on routinely collected individual account data. Journal of Behavioral Addictions, 14(1), 490–500. https://doi.org/10.1556/2006.2025.00013 DOI: https://doi.org/10.1556/2006.2025.00013
Aonso-Diego, G., García-Pérez, Á., y Krotter, A. (2025). Impact of Spanish gambling regulations on online gambling behavior and marketing strategies. Harm Reduction Journal, 22(1), 1-12. https://link.springer.com/article/10.1186/s12954-025-01219-7 DOI: https://doi.org/10.1186/s12954-025-01219-7
Auer, M. M., y Griffiths, M. D. (2015). The use of personalized behavioral feedback for online gamblers: an empirical study. Frontiers in psychology, 6, 1406. DOI: https://doi.org/10.3389/fpsyg.2015.01406
Boerman, S. C., Kruikemeier, S., y Zuiderveen Borgesius, F. J. (2017). Online behavioral advertising: A literature review and research agenda. Journal of advertising, 46(3), 363-376. https://doi.org/10.1080/00913367.2017.1339368 DOI: https://doi.org/10.1080/00913367.2017.1339368
Braun, V., y Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa DOI: https://doi.org/10.1191/1478088706qp063oa
Brehm, J. W. (1966). A theory of psychological reactance. Academic Press.
Cortés Torres, J. E., Saldaña Moreno, C. E., Mendoza Moncada, J. S., y Perdomo Pineda, J. D. (2024). El chatbot aplicado a salud. Una revisión bibliométrica. Revista de Comunicación y Salud, 15, e355. https://doi.org/10.35669/rcys.2025.15.e355 DOI: https://doi.org/10.35669/rcys.2025.15.e355
Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., Luetge, C., Madelin, R., Pagallo, U., Rossi, F., Schafer, B., Valcke, P., y Vayena, E. (2018). AI4People—an ethical framework for a good AI society: opportunities, risks, principles, and recommendations. Minds and machines, 28, 689-707. https://doi.org/10.1007/s11023-018-9482-5 DOI: https://doi.org/10.1007/s11023-018-9482-5
Gainsbury, S., Hing, N., Delfabbro, P. H., y King, D. L. (2014). A taxonomy of gambling and casino games via social media and online technologies. International gambling studies, 14(2), 196-213. https://doi.org/10.1080/14459795.2014.890634 DOI: https://doi.org/10.1080/14459795.2014.890634
Gray, C. M., Kou, Y., Battles, B., Hoggatt, J., y Toombs, A. L. (2018, April). The dark (patterns) side of UX design. In Proceedings of the 2018 CHI conference on human factors in computing systems (pp. 1-14). https://doi.org/10.1145/3173574.3174108 DOI: https://doi.org/10.1145/3173574.3174108
Griffiths, M. D. (2019). The psychology of gambling. Routledge.
Helberger, N., Pierson, J., y Poell, T. (2018). Governing online platforms: From contested to cooperative responsibility. The information society, 34(1), 1-14. https://doi.org/10.1080/01972243.2017.1391913 DOI: https://doi.org/10.1080/01972243.2017.1391913
Kairouz, S., Costes, J. M., Murch, W. S., Doray-Demers, P., Carrier, C., y Eroukmanoff, V. (2023). Enabling new strategies to prevent problematic online gambling: A machine learning approach for identifying at-risk online gamblers in France. International Gambling Studies, 23(3), 471-490. https://doi.org/10.1080/14459795.2022.2164042 DOI: https://doi.org/10.1080/14459795.2022.2164042
Kaptein, M., y Eckles, D. (2012). Heterogeneity in the effects of online persuasion. Journal of Interactive Marketing, 26(3), 176-188. https://doi.org/10.1016/j.intmar.2012.02.002 DOI: https://doi.org/10.1016/j.intmar.2012.02.002
Kaptein, M., Lacroix, J., y Saini, P. (2015). Individual differences in persuasive technology design: Tailoring persuasive messages using persuasion profiles. International Journal of Human-Computer Studies, 77, 38–51. https://doi.org/10.1016/j.ijhcs.2015.01.004 DOI: https://doi.org/10.1016/j.ijhcs.2015.01.004
Kim, J., y Jeong, H. J. (2023). «It’s my virtual space»: the effect of personalized advertising within social media. International Journal of Advertising, 42(8), 1267-1294. https://doi.org/10.1080/02650487.2023.2274243 DOI: https://doi.org/10.1080/02650487.2023.2274243
Kollmer, T., y Eckhardt, A. (2023). Dark patterns: conceptualization and future research directions. Business y information systems engineering, 65(2), 201-208. https://doi.org/10.1007/s12599-022-00783-7 DOI: https://doi.org/10.1007/s12599-022-00783-7
Lopez-Gonzalez, H., Estévez, A., y Griffiths, M. D. (2018). Internet-based structural characteristics of sports betting and problem gambling severity: Is there a relationship? Journal of Behavioral Addictions, 7(2), 423–431. https://doi.org/10.1556/2006.7.2018.49 DOI: https://doi.org/10.1556/2006.7.2018.49
Luguri, J. B., y Strahilevitz, L. (2021). Shining a light on dark patterns. Journal of Legal Analysis, 13, 43–109. https://doi.org/10.1093/jla/laaa006 DOI: https://doi.org/10.1093/jla/laaa006
Lyell, D., y Coiera, E. (2017). Automation bias and verification complexity: a systematic review. Journal of the American Medical Informatics Association, 24(2), 423-431. https://doi.org/10.1093/jamia/ocw105 DOI: https://doi.org/10.1093/jamia/ocw105
Martin, K. D., y Murphy, P. E. (2017). The role of data privacy in marketing. Journal of the Academy of Marketing Science, 45, 135–155. https://doi.org/10.1007/s11747-016-0495-4 DOI: https://doi.org/10.1007/s11747-016-0495-4
Mathur, A., Acar, G., Friedman, M. G., Lucherini, E., Mayer, J., Chetty, M., y Narayanan, A. (2019). Dark patterns at scale: Findings from a crawl of 11K shopping websites. Proceedings of the ACM on Human-Computer Interaction, 3(CSCW), 1–32. https://doi.org/10.1145/3359183 DOI: https://doi.org/10.1145/3359183
Matos Agudo, D., Rubio Gil, F. J., Nieto Manibardo, E., Rey García, P., y Gómez Sánchez, J. C. (2024). Estudio cualitativo de los intercambios comunicativos en la asistencia sanitaria hospitalaria a través de los estudiantes del grado de Medicina. Revista de Comunicación y Salud, 15, e373. https://doi.org/10.35669/rcys.2025.15.e373 DOI: https://doi.org/10.35669/rcys.2025.15.e373
McGrane, E., Pryce, R., Field, M., Gu, S., Moore, E. C., y Goyder, E. (2025). What is the impact of sports‐related gambling advertising on gambling behaviour? A systematic review. Addiction, 120(4), 589-607. https://doi.org/10.1111/add.16761 DOI: https://doi.org/10.1111/add.16761
Min, M., y Lee, D. A. (2024). Illegal online gambling site detection using multiple resource-oriented machine learning. Journal of Gambling Studies, 40(4), 2237–2255. https://doi.org/10.1007/s10899-024-10337-z DOI: https://doi.org/10.1007/s10899-024-10337-z
Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., y Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data y Society, 3(2), 2053951716679679. https://doi.org/10.1177/2053951716679679 DOI: https://doi.org/10.1177/2053951716679679
Newall, P., Weiss-Cohen, L., Torrance, J., y Bart, Y. (2024). Not always as advertised: different effects from viewing safer gambling adverts on gambling urges. OSF. https://bit.ly/4lqcFtj DOI: https://doi.org/10.31219/osf.io/8tpqf
Parasuraman, R., & Riley, V. (1997). Humans and automation: Use, misuse, disuse, abuse. Human Factors, 39(2), 230–253.
https://doi.org/10.1518/001872097778543886 DOI: https://doi.org/10.1518/001872097778543886
Parke, J., Wardle, H., Rigbye, J., y Parke, A. (2013). Exploring social gambling: Scoping, classification and evidence review. Gambling Commission. https://doi.org/10.2139/ssrn.2510435
Petty, R. E., y Cacioppo, J. T. (1986). The elaboration likelihood model of persuasion. Springer. DOI: https://doi.org/10.1007/978-1-4612-4964-1_1
Pfund, R. A., Ginley, M. K., Kim, H. S., Boness, C. L., Horn, T. L., y Whelan, J. P. (2023). Cognitive-behavioral treatment for gambling harm: Umbrella review and meta-analysis. Clinical psychology review, 105, 102336. https://doi.org/10.1016/j.cpr.2023.102336 DOI: https://doi.org/10.1016/j.cpr.2023.102336
Rossi, R., y Nairn, A. (2024). Priming young minds: The appeal of gambling advertising to children and young people. Journal of the Association for Consumer Research, 9(2), 187-199. https://doi.org/10.1086/729290 DOI: https://doi.org/10.1086/729290
Seo, W., Kim, N., Lee, S. K., y Park, S. M. (2020). Machine learning-based analysis of adolescent gambling factors. Journal of Behavioral Addictions, 9(3), 734-743. https://doi.org/10.1556/2006.2020.00063 DOI: https://doi.org/10.1556/2006.2020.00063
Sumner, P., Vivian-Griffiths, S., Boivin, J., Williams, A., Bott, L., Adams, R., Venetis, C. A., Whelan, L., Hughes, B., y Chambers, C. D. (2016). Exaggerations and caveats in press releases and health-related science news. PloS one, 11(12), e0168217. https://doi.org/10.1371/journal.pone.0168217 DOI: https://doi.org/10.1371/journal.pone.0168217
Susser, D., Roessler, B., y Nissenbaum, H. (2019). Online manipulation: Hidden influences in a digital world. Georgetown Law Technology Review, 4, 1–45. https://doi.org/10.2139/ssrn.3306006 DOI: https://doi.org/10.2139/ssrn.3306006
Turow, J., Draper, N., Einstein, M., Hamilton, J. F., y Timke, E. (2021). The voice catchers: How marketers listen in to exploit your feelings, your privacy, and your wallet. Advertising y Society Quarterly, 22(4). https://dx.doi.org/10.1353/asr.2021.0046. DOI: https://doi.org/10.1353/asr.2021.0046
Van Schalkwyk, M. C., Petticrew, M., Cassidy, R., Adams, P., McKee, M., Reynolds, J., y Orford, J. (2021). A public health approach to gambling regulation: countering powerful influences. The Lancet Public Health, 6(8), e614-e619. https://dx.doi.org/10.1016/S2468-2667(21)00098-0 DOI: https://doi.org/10.1016/S2468-2667(21)00098-0
Zuboff, S. (2023). The age of surveillance capitalism. En Social theory re-wired: (pp. 203-213). Routledge. DOI: https://doi.org/10.4324/9781003320609-27
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Luz Martínez Martínez, María Arteaga Ros, Ubaldo Cuesta Cambra

Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos de autor.
- Los autores/as ceden a la revista el derecho de la primera publicación. La revista también posee los derechos de edición.
- Todos los contenidos publicados se regulan mediante una Licencia Atribución/Reconocimiento-SinDerivados 4.0 Internacional. Acceda a la versión informativa y texto legal de la licencia. En virtud de ello, se permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista. Si transforma el material, no podrá distribuir el trabajo modificado.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales), una vez publicado en la revista y citando a la misma ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).







