Persuasive Design and Algorithms in Online Betting Platforms
Ethical, Communicative, and Public Health Implications
DOI:
https://doi.org/10.62701/revsocial.v13.5497Keywords:
Personalization algorithms, Artificial intelligence, Online gambling, Persuasive design, Dark patterns, Algorithmic communication, Ethical digital regulationAbstract
This study examines how artificial intelligence algorithms, personalization, and persuasive design shape user experiences on online gambling platforms. Through a systematic literature review (2015–2025), it identifies practices such as behavioral segmentation, dark patterns, and algorithmic communication aimed at maximizing user retention. Findings reveal a technocommunicative ecosystem that is opaque, emotionally manipulative, and underregulated, posing significant risks to user autonomy. The study calls for enhanced transparency, critical digital literacy, and ethical regulation as key strategies to mitigate these effects.
Downloads
Global Statistics ℹ️
|
25
Views
|
4
Downloads
|
|
29
Total
|
|
References
Ahmad, N., y Aurangzeb, M. (2025). Revolutionizing Casino Operations: The Role of Artificial Intelligence and Big Data in Enhancing Customer Loyalty and Revenue Growth. https://doi.org/10.13140/RG.2.2.31978.43209
Andersson, S., Carlbring, P., Lyon, K., Bermell, M., & Lindner, P. (2025). Insights into the temporal dynamics of identifying problem gambling on an online casino: A machine learning study on routinely collected individual account data. Journal of Behavioral Addictions, 14(1), 490–500. https://doi.org/10.1556/2006.2025.00013 DOI: https://doi.org/10.1556/2006.2025.00013
Aonso-Diego, G., García-Pérez, Á., y Krotter, A. (2025). Impact of Spanish gambling regulations on online gambling behavior and marketing strategies. Harm Reduction Journal, 22(1), 1-12. https://link.springer.com/article/10.1186/s12954-025-01219-7 DOI: https://doi.org/10.1186/s12954-025-01219-7
Auer, M. M., y Griffiths, M. D. (2015). The use of personalized behavioral feedback for online gamblers: an empirical study. Frontiers in psychology, 6, 1406. DOI: https://doi.org/10.3389/fpsyg.2015.01406
Boerman, S. C., Kruikemeier, S., y Zuiderveen Borgesius, F. J. (2017). Online behavioral advertising: A literature review and research agenda. Journal of advertising, 46(3), 363-376. https://doi.org/10.1080/00913367.2017.1339368 DOI: https://doi.org/10.1080/00913367.2017.1339368
Braun, V., y Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa DOI: https://doi.org/10.1191/1478088706qp063oa
Brehm, J. W. (1966). A theory of psychological reactance. Academic Press.
Cortés Torres, J. E., Saldaña Moreno, C. E., Mendoza Moncada, J. S., y Perdomo Pineda, J. D. (2024). El chatbot aplicado a salud. Una revisión bibliométrica. Revista de Comunicación y Salud, 15, e355. https://doi.org/10.35669/rcys.2025.15.e355 DOI: https://doi.org/10.35669/rcys.2025.15.e355
Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., Luetge, C., Madelin, R., Pagallo, U., Rossi, F., Schafer, B., Valcke, P., y Vayena, E. (2018). AI4People—an ethical framework for a good AI society: opportunities, risks, principles, and recommendations. Minds and machines, 28, 689-707. https://doi.org/10.1007/s11023-018-9482-5 DOI: https://doi.org/10.1007/s11023-018-9482-5
Gainsbury, S., Hing, N., Delfabbro, P. H., y King, D. L. (2014). A taxonomy of gambling and casino games via social media and online technologies. International gambling studies, 14(2), 196-213. https://doi.org/10.1080/14459795.2014.890634 DOI: https://doi.org/10.1080/14459795.2014.890634
Gray, C. M., Kou, Y., Battles, B., Hoggatt, J., y Toombs, A. L. (2018, April). The dark (patterns) side of UX design. In Proceedings of the 2018 CHI conference on human factors in computing systems (pp. 1-14). https://doi.org/10.1145/3173574.3174108 DOI: https://doi.org/10.1145/3173574.3174108
Griffiths, M. D. (2019). The psychology of gambling. Routledge.
Helberger, N., Pierson, J., y Poell, T. (2018). Governing online platforms: From contested to cooperative responsibility. The information society, 34(1), 1-14. https://doi.org/10.1080/01972243.2017.1391913 DOI: https://doi.org/10.1080/01972243.2017.1391913
Kairouz, S., Costes, J. M., Murch, W. S., Doray-Demers, P., Carrier, C., y Eroukmanoff, V. (2023). Enabling new strategies to prevent problematic online gambling: A machine learning approach for identifying at-risk online gamblers in France. International Gambling Studies, 23(3), 471-490. https://doi.org/10.1080/14459795.2022.2164042 DOI: https://doi.org/10.1080/14459795.2022.2164042
Kaptein, M., y Eckles, D. (2012). Heterogeneity in the effects of online persuasion. Journal of Interactive Marketing, 26(3), 176-188. https://doi.org/10.1016/j.intmar.2012.02.002 DOI: https://doi.org/10.1016/j.intmar.2012.02.002
Kaptein, M., Lacroix, J., y Saini, P. (2015). Individual differences in persuasive technology design: Tailoring persuasive messages using persuasion profiles. International Journal of Human-Computer Studies, 77, 38–51. https://doi.org/10.1016/j.ijhcs.2015.01.004 DOI: https://doi.org/10.1016/j.ijhcs.2015.01.004
Kim, J., y Jeong, H. J. (2023). «It’s my virtual space»: the effect of personalized advertising within social media. International Journal of Advertising, 42(8), 1267-1294. https://doi.org/10.1080/02650487.2023.2274243 DOI: https://doi.org/10.1080/02650487.2023.2274243
Kollmer, T., y Eckhardt, A. (2023). Dark patterns: conceptualization and future research directions. Business y information systems engineering, 65(2), 201-208. https://doi.org/10.1007/s12599-022-00783-7 DOI: https://doi.org/10.1007/s12599-022-00783-7
Lopez-Gonzalez, H., Estévez, A., y Griffiths, M. D. (2018). Internet-based structural characteristics of sports betting and problem gambling severity: Is there a relationship? Journal of Behavioral Addictions, 7(2), 423–431. https://doi.org/10.1556/2006.7.2018.49 DOI: https://doi.org/10.1556/2006.7.2018.49
Luguri, J. B., y Strahilevitz, L. (2021). Shining a light on dark patterns. Journal of Legal Analysis, 13, 43–109. https://doi.org/10.1093/jla/laaa006 DOI: https://doi.org/10.1093/jla/laaa006
Lyell, D., y Coiera, E. (2017). Automation bias and verification complexity: a systematic review. Journal of the American Medical Informatics Association, 24(2), 423-431. https://doi.org/10.1093/jamia/ocw105 DOI: https://doi.org/10.1093/jamia/ocw105
Martin, K. D., y Murphy, P. E. (2017). The role of data privacy in marketing. Journal of the Academy of Marketing Science, 45, 135–155. https://doi.org/10.1007/s11747-016-0495-4 DOI: https://doi.org/10.1007/s11747-016-0495-4
Mathur, A., Acar, G., Friedman, M. G., Lucherini, E., Mayer, J., Chetty, M., y Narayanan, A. (2019). Dark patterns at scale: Findings from a crawl of 11K shopping websites. Proceedings of the ACM on Human-Computer Interaction, 3(CSCW), 1–32. https://doi.org/10.1145/3359183 DOI: https://doi.org/10.1145/3359183
Matos Agudo, D., Rubio Gil, F. J., Nieto Manibardo, E., Rey García, P., y Gómez Sánchez, J. C. (2024). Estudio cualitativo de los intercambios comunicativos en la asistencia sanitaria hospitalaria a través de los estudiantes del grado de Medicina. Revista de Comunicación y Salud, 15, e373. https://doi.org/10.35669/rcys.2025.15.e373 DOI: https://doi.org/10.35669/rcys.2025.15.e373
McGrane, E., Pryce, R., Field, M., Gu, S., Moore, E. C., y Goyder, E. (2025). What is the impact of sports‐related gambling advertising on gambling behaviour? A systematic review. Addiction, 120(4), 589-607. https://doi.org/10.1111/add.16761 DOI: https://doi.org/10.1111/add.16761
Min, M., y Lee, D. A. (2024). Illegal online gambling site detection using multiple resource-oriented machine learning. Journal of Gambling Studies, 40(4), 2237–2255. https://doi.org/10.1007/s10899-024-10337-z DOI: https://doi.org/10.1007/s10899-024-10337-z
Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., y Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data y Society, 3(2), 2053951716679679. https://doi.org/10.1177/2053951716679679 DOI: https://doi.org/10.1177/2053951716679679
Newall, P., Weiss-Cohen, L., Torrance, J., y Bart, Y. (2024). Not always as advertised: different effects from viewing safer gambling adverts on gambling urges. OSF. https://bit.ly/4lqcFtj DOI: https://doi.org/10.31219/osf.io/8tpqf
Parasuraman, R., & Riley, V. (1997). Humans and automation: Use, misuse, disuse, abuse. Human Factors, 39(2), 230–253.
https://doi.org/10.1518/001872097778543886 DOI: https://doi.org/10.1518/001872097778543886
Parke, J., Wardle, H., Rigbye, J., y Parke, A. (2013). Exploring social gambling: Scoping, classification and evidence review. Gambling Commission. https://doi.org/10.2139/ssrn.2510435
Petty, R. E., y Cacioppo, J. T. (1986). The elaboration likelihood model of persuasion. Springer. DOI: https://doi.org/10.1007/978-1-4612-4964-1_1
Pfund, R. A., Ginley, M. K., Kim, H. S., Boness, C. L., Horn, T. L., y Whelan, J. P. (2023). Cognitive-behavioral treatment for gambling harm: Umbrella review and meta-analysis. Clinical psychology review, 105, 102336. https://doi.org/10.1016/j.cpr.2023.102336 DOI: https://doi.org/10.1016/j.cpr.2023.102336
Rossi, R., y Nairn, A. (2024). Priming young minds: The appeal of gambling advertising to children and young people. Journal of the Association for Consumer Research, 9(2), 187-199. https://doi.org/10.1086/729290 DOI: https://doi.org/10.1086/729290
Seo, W., Kim, N., Lee, S. K., y Park, S. M. (2020). Machine learning-based analysis of adolescent gambling factors. Journal of Behavioral Addictions, 9(3), 734-743. https://doi.org/10.1556/2006.2020.00063 DOI: https://doi.org/10.1556/2006.2020.00063
Sumner, P., Vivian-Griffiths, S., Boivin, J., Williams, A., Bott, L., Adams, R., Venetis, C. A., Whelan, L., Hughes, B., y Chambers, C. D. (2016). Exaggerations and caveats in press releases and health-related science news. PloS one, 11(12), e0168217. https://doi.org/10.1371/journal.pone.0168217 DOI: https://doi.org/10.1371/journal.pone.0168217
Susser, D., Roessler, B., y Nissenbaum, H. (2019). Online manipulation: Hidden influences in a digital world. Georgetown Law Technology Review, 4, 1–45. https://doi.org/10.2139/ssrn.3306006 DOI: https://doi.org/10.2139/ssrn.3306006
Turow, J., Draper, N., Einstein, M., Hamilton, J. F., y Timke, E. (2021). The voice catchers: How marketers listen in to exploit your feelings, your privacy, and your wallet. Advertising y Society Quarterly, 22(4). https://dx.doi.org/10.1353/asr.2021.0046. DOI: https://doi.org/10.1353/asr.2021.0046
Van Schalkwyk, M. C., Petticrew, M., Cassidy, R., Adams, P., McKee, M., Reynolds, J., y Orford, J. (2021). A public health approach to gambling regulation: countering powerful influences. The Lancet Public Health, 6(8), e614-e619. https://dx.doi.org/10.1016/S2468-2667(21)00098-0 DOI: https://doi.org/10.1016/S2468-2667(21)00098-0
Zuboff, S. (2023). The age of surveillance capitalism. En Social theory re-wired: (pp. 203-213). Routledge. DOI: https://doi.org/10.4324/9781003320609-27
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Luz Martínez Martínez, María Arteaga Ros, Ubaldo Cuesta Cambra

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Those authors who publish in this journal accept the following terms:
-
Authors retain copyright.
-
Authors transfer to the journal the right of first publication. The journal also owns the publishing rights.
-
All published contents are governed by an Attribution-NoDerivatives 4.0 International License.
Access the informative version and legal text of the license. By virtue of this, third parties are allowed to use what is published as long as they mention the authorship of the work and the first publication in this journal. If you transform the material, you may not distribute the modified work. -
Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (e.g., inclusion in an institutional repository or publication in a book) as long as they clearly indicate that the work was first published in this journal.
- Authors are allowed and recommended to publish their work on the Internet (for example on institutional and personal websites), following the publication of, and referencing the journal, as this could lead to constructive exchanges and a more extensive and quick circulation of published works (see The Effect of Open Access).







